Stenford Artificiel Inteligence Laboratory Jne 1975
Memo AM-261
Computer Science Department @ F G
Report No. STAN-CS-75-501 |
.j-""' |
Procedural Events as Software Interrupts

S
= v
v ol Odd Pettersen
O
ey
S
1!
Q
<<
Research sponsored by ﬁ7
Advanced Research Projects Agency

ARPA Order No. 2494

) W p 04 ey
] v)mlcﬂn 2 v et
R A T T e did ey JAe ETTE LR i SRR T e AT AT, T =S

- -—————

o S =
e

7 C in f “/q
T ——

7are

e
3
3
B i T

PROCEDURAL EVENTS AS SOFTWARE INTERRUPTS
by
Odd Pettersen

Stanford University
Artificial Intelligence Laboratory *

June 1975

ABSTRACT and Introductory remarks.

The paper deals with procedural events, providing a basis for synchronization and
scheduling, particularly applied on real-time program systems of multiple parallel activities
(*multi-task®.

There is & great need for convenient scheduling mechanisms for minicomputer
systems as used in process control, but so far mechanisms somewhat similar to those
proposed here are found only in PL/I among the generally known high-level languages.
PL/l, however, is not very common on computers of this size. Also, the mechanisms in PL/I
seem more restricted, as compared to those proposed here.

A new type of boolean program variable, the EVENTMARK, is proposed. Eventmarks
represent events of any kind that may occur within a computational process and are
balieved to give very efficient and convenient activation and scheduling of program
modules in a real-time system. An eventmark is declared similar to a procedure, and the
proposed feature could easily be amended as an extension to existing languages, as well
as incorporated in future language designs. K

Key Words and Phrases:
Scheduling, synchronization, language design, parallel programming,
multiprogramming, concurrent processes, process communication, shared variables, events,

software interrupts.
CR Categories: 3.80, 3.82, 4.12, 4.20, 4.30, 4.32, 435

This research was supported in part by the Advanced Research Projects Agency of the Office of the
Secretary of Defense under contract DAHC 15-73-C-0435.

The view and conclusions contained in this document are those of the author and should not he
incerpreted as necessarily representing the official policies, either expressed or implied, of the
Advenced Research Agency or the US Government.

1 Present address: :
Stanford Artificial Intelligence Laboratory
Computer Science Dept. '
Stanford University
Stanford, CA. 94305

Address after Augnst 1975
T he Technical University of Norway
Div. of Engineering Cybernetics,
7034 Trondheim - NTH
Norway

- il ademeid b o d - ¥ Ay - e o ate e seadie of o ook bl oot L Uik scaaddis el

AR e

INTRODUCTION

Scheduling and mutual synchronization of individual parallel aclivities ("tasks”) in a real-time
multiprogramming, and possibly multiprocessing, system is governed by conditions of various kinds, as
required by participating parallel activities. Some conditions are linked to time evants, like

B« (t>tl) (1)
where:

t is "wall clock time"

tl is some predetermined time

B is the condition, recognized as a binary boolean quantity.

Another type of condition, not linked to time, may be:
B+-(a=1) (2)
whore a, for example, can be representing an external boolean signal, of some finite duration.

A third example represents a common case:
B+ (x>y) (3)
where x and y may be computed quantities.

Conditions of this kind are cither generated in some program modules or read in throug\ the input
system They are generally used as aclivating conditions for program modules, different from where they
are generated.

It is well recognized thai the fastest response is obtained by use of interrupts, it the srigin of
events like those mentioned above is some hardware source oulside the central processor, and if it is also
roquired that a high degree of cantral processor utilization oe maintained.

ione of the languages in general use are known to have similar mechanisms for internall, generated
evenis, however, although we can simulate interrupts by different means: We can use trup instructione,
special instructions aclivating the hardware interrupt system, or we can jump directly into some special
place in the interrupt handling routine.

Both simulated interrupts and active restarting, like Example 1 helow, depend, howaver, on actions
in the program module generating the event (source module). We have no means to specify, in the
receiving program module, what arbitrary conditions we want as trigger, if these conditions occur in a
different module. The only way a receiving module can discover if some event has occurred in some other
prosram module, is by repeated testing. This is very wastetul in respect of processor resource utilization,
and moreover, this waste increases proportionally with required decreased response time. If a module could
specify relations like eq. (1) to (3) as events which are wanted to subsequently trigger certain effects, and
then suspend itself or do something useful, we would have a software feature resembling the hardware
interrunt mechanism.

in Example |, "receiving module” suspends itself by an appropriate monitor call. A subsequent
monitor call WAKE in another program can restart a suspended prograia. In this case, the call WAKE(TA)
will reactivate program TA to continue at the point immediately following where it was suspended (label
LAL).

Repuated testing is illustrated in Example 2, where "receiving module” is Program TB in two
alternative versions, TB! and TB2. A condition is changed in "source mocule” Program SB. In the case of
TBI, this program is always active; repeated testing is the processortime-wasteful "busy waiting”. TB2 is
potentially less wasteful, but involves a trade-off between response-time a7d processor time sperdings,
solectable by some choice of value for tdelay. This seems to be the method used in [2] for recognizing
changa in specified conditions.

Exainple 1: Active re=-starting from source program.

Program SA:
Xi= ====)
WAKE(TA);

AR T s
I T =

—— e a et P e AT e i il

Progran TA

SUSPEND;
LAl: y:i= ===-
comment reactivating at LA1, pertormed by call in program SA. Evaluation of some function y:st(x) ;

Example 2: Testing and “busy waiting”.

Program SB:
Ximi====y
corment some funclion evaluation changing x;

Program TBI:
LBY: if x < x| then go tolBl;
yiz ====; comment some function y=t{x).;

Program TB2.
LB2: if x < x| then hegin
SUSPEND(tdelay);
comment suspend for duration tdelay, then test again;
go to LB2 end;
yiz ====; comment some function yaf(x).;

It is my intention, with the present paper, to present procedural events as a more efficient method
to perceive expacted conditions. | want to show that such procedural events can be implemented relatively
easily, and that they can give substantial benefits in ease of programming and scheduling ot independent
but interacting paralle! activities in a muitiprogramming /multiprocessor system, particularly real-time (RT)
systems. Such events constitute a real software counterpart to hardware interrupts, and | call them
procedural because they resemble procedures in the way they are declarec and evaluated.

Short reaction and processing time is a major requirement, it software "interrupts” are to resemble
hardware interrupts; this requirement is considered seriously and it makes internal testing and “busy
waiting” quite superfluous and obsolete. .

To gain speed during run-lime, some conditions are prepared during compilation time. Thus, it
requires some minor modiications and additions 1o the compiler. It not realizable for existing systems, it
should be very easy to include in new syslems, however.

Program elements for synchronization and scheduling, app'ying procedural events, are covered only 4
summarily in a following section, since the author has considered this problem in a separate paper [1]. i

DEFINITION OF "EVENT"
| find the fallowing definition of the term even! applicable:

An cvent is a significant discrete occurrence or incident which is intended to affect some program
execution in a planned manner. The source of an event can belong logically to an entity distinctively
apart from the atfected program unit or units. An event itself occurs instantaneously and is of
infinitesimal duration. The fact that an event has occurred is indicated by an eventmark which is a
binary-valued program varisble of type Boolean.

-4-

Additional explanation to the definition:
The occurrence may be external or internal: The effect of an external event will be transmitted
through the processor's input interface system as an interrupt request signal or a signal aclively

i'r read by some rrogram slatements. The source of an external event will generally be of some
i ’ physical nature.
1 ¢ An internal event is characterized by some condition change within a program as a consequence of

' 1 some program action. With relation o the effect of an event, it is not distinguished between
3 extornal or internal nature of its origin.
4 Evidently, relations like (1) 1o (3) are covered by this definition, B being an eventmark.

Time eventmarks are usually defined, and tested, according to eq. (1). Such an eventmark is "turned
| off" again, 1.e. made false, by giving tl an updated value corresponding to the next future occurrence.
E | have, hitherto, linked evenimarks 1o only a few simple examples of defining equations, like (1) to
(3). The becauty of the concept is, however, that any syntactical correct boolean expression may be used,
defining a particular evenimark. A component of a defining boolean expression could also, for example, be
representing an external event, input as hardware interrupt. There is virfually no limitation, although
unneccssary complicated expressions will take some more run-lime to evaluate, though usually not
excessively more time.

DECLARATION OF EVENTMARKS AND BLOCK STRUCTURE OF THE LANGUAGE

Eventmarks are global variables, common for at least two real-time programs, the one(s) where the
i event occur(s) and the onels) that is (are) triggered by the event. Eventmarks must be declared, similar to
variables and procedures. A declaration of three evenimarks may look like:

eventmark B:=p>tl; Cizavbae; D:zqvx>y end; (4)

A block structure which may be incorporated in the language, should be available for use 1o its full
advantage, also in combination with procedural events. Like any cother type of declared variable, an

’ evenimark should have a scope confined to the block whera it is declarad. If all variables in the defining
doclaration-equations are {reated as global, their scope will be the entire system of programs, and no
problems would result.

» It could te desirable to put the declaration together with the source module(s), however, such that
the frce variables, or some of them, be local to 2 block comprising this (these) module(s). The purpose
could, for example, be to screen these variables from the remaining program including the recaiving
module(s). The eventmark must be common to both source and receiving module, however; thus the
evenimark(s) would belong lo a comprising block, i.e. at a higher level in the block hierarchy.

This consequence contradicts the rules of possible block levels in usual procedure declarations,
where the free variables may belong to a higher block level, whereas tha dependent vai.able name, ie.
the procedure name itself, always attains the level of the block heading conteining the declaration.

The best solution to this dilemma seems to be that the eventmark declaration and the procedure
declaration are considered slightly different in one respect, proposed below:

All variables involved in an eventmark declaration should be declarad separalely, as variables, either
at the same lovel or at a higher (encompassing) level related to the puint where the sventmark declaration
is placed. Thus, the eventmark name itself must be declared elsewhere, as a boolean variable, either in the
same block-head or at a higher level. Then, the blocklevel=structure of the participating variables may be
chosen according to the specific need, and the eventmark declaration equation merely serves to define the
arithmelic relation, besides it defines the previously declared boolean variable as an eventmark and
introduces it, as well as the free variables, to the compiler mechanism handling the suggested TEV-tatle.

e i —— .

|

W & L v = 'njv-

-5-
The typical block-structure would, for example, look like:

begyin hoolean B, C, D; boolean array F[1:10};
realt, -==;
. begin PROGRAM 1 real tl, x, y; hoolean a, b, e, g3
eventmark B:=t>tl; Di=qvdy end;
X i =e=
end;
hegin PROGRAM 2 real p,s, ===

await D

end;

end main program;

Basically, the main reason for the necessily of deviating from identity with procedure declaration is
that the latler serves a double function: The introduction and declaration of the procedure name itself, and
the definition of the procedure with formal parameters, body, and its relation to the procedure name. For
procedures, these two functions of the declaralion can conveniently be combined, whereas they need to be
ceparated for eventmarks, in order to satisty desirable requiremants for the scope of the variables.

A NOTE ABOUT IMPLEMENTATION IN COMPILER

The doclaration like (4) will tell the compiler that the "fres” variables on right hand side of the defining
equations are those variables, scaitered around in the program, that may cause an svenimark to become
true, and these variables are the only variables that can affect an evenimark directly. Thus, the compiler
& should, immediately upon recognizing the eventmark declaration, generate a temporary table (here called
the TEV-iable), where the free variables are eniries, providing reference to the eventmark, according to
defining declarations. Generally, one variable may be an argument for more than one svenimark, so that
! these evenimarks should be linked in the TEV-table.
The evenimark declaration resembles 8 procedure declaration, since it defines an algebraic
expression which is to be used for evaluation of eventmark value. Just like any other algebraic expression,
each evenimark will be representad by a parsed tree.

GENERATION OF EVENTS

During the compilation, every time an assignment is encountered, the TEV-tabls is checked against
tho assigned variable. If the assigned variable is an entry in the TEV-table, a reference to the evantmark
evaluation routine in the operating system is inserted in the generated cude stream immediately following
the assignment. The run-time consequence is, that every time a new value is computed for a variable that
is a frce variable in a definition expression for an eventmark, this eventmark expression is also evaluated,
and the evenimark is given a possibly new value.

Al run time, the operating syster (0S) will maintain some dynamic scheduling table, possibly tables,
of individual program modules that await some event. Let us here distinguish between internal scheduling
tables which the OS uses when RT programs are preempted due to limited processor or memory resources,
and the scheduling table(s) that the programmer is concerned with. The former table should be completely
transparent o the user, but not the latter. Only the latter table is of concern here and is here called the
DS-table (Dynamic Scheduling).

As soon as an eventmark is evaluated, the scheduler is notified accordingly. Thus, the concerned
program(s) may be activated very fast, shortly at'er the activating eventmark became true.

|
|
'
|
{

L e Ak T o s s & @
T I T L I T PN Ty

48

SSIVE SLOW-DOWN OF EXECUTION

mark evaluaiion, eutomatically inserted at several places in the
ution of the program. This would be a very serious effect which
mark evaluation is under complete control of the

AVOIDANCE OF EXCE

it may be objecled, that this event

compiled program, may slow downr the exec

frequently can not be lolerated. inclusion of eveni
proarammer, fowever, who has 2 direct and very simvle option of eliminating eventmark evaluation from

critical parts of the program (particularly innermost ioops and other "bottlenecks"): Instead of using the

variable name that represents a free variable (x say) in an eventmark expression, he should, in critical

parts of the program, use another variable name (x! say). Then, as soon as desirable and outside the
{ the eventmark expression is assigned the value of the other:

(5)

critical loop, the variable 0
x := xl;
Obviously, the aventmark evaluation will not take place until eq. (5) is encountered. With relation to
reason 1o consider implications from eventmark evaluation outside

time, there is no

thus the burden upon the
h other oplimization efforts within

the programmer may neglect tricks like

programmer, of considerations due to evenimark evaluations, is
"botllenecks”. f computing time and

(5) completely.

computing
"boltlenecks";
neghgible and coincides wit
"potllenecks" are of no concern,

SPECIFICATION OF TRIGGERING EVENTS

ed, as shown in a preceding seclion,
ogram into an oxecuting state. The

When an eventmark has been declar it may freely be specified
following examples should

as the condition for the transition of a pr
serve as typical cases:

started when an eventmark D becomes true:

* A designated program, PROG, may be

start(PROG, D); (6)

¢ statement is a different one from PROG.

Obviously, the program containing thi
itself, specifying an eventmark for

at any point in its execution, call suspension of

* A program may,
subsequent reactivation:

™)

suspend(C);
wee= comment The program resu

mes execution at ‘ais point when C becomes true;

controlled effectively. by the use of

* As shown in [1], synchronization and resource-sharing may be
conditional critical regions with priorities:
(8)

region vi=p when B do S
region vi=p d0 S 9)
await B (10)

where:
v designates the critical region
P specifies the relative priority for entrance into the region
B8 a declared eventmark specifying the condition for:
in (8): entrance into competition for the region
in (10): continuation in the program, with the succeeding statement.

S constitutes the statement(s) to be execuled within the region.

¢ equivalent to (8) when Bstrue.

Statement (9) is unconditional and i

L8

All statements (8) to (10) cause an activation of a monitor routine whici suspends the calling
program The suspansion will be in offect until all the following conditions are satisfied:

* Condition B is true (statement (8) and (10))
x p 1s highest comparad to priorities for other programs compeling for the same region
* The named region is not presently assigned to another program (statement (8) and (9)).

It follows, that it would be desirable that the condition evenimark B = true be recognized as soon as
possible. The use of "procedural eventmarks” as described here should provide an efficient method,
besides it is also very convenient for the programmer.

COMPARISON WITH PL/I SOF TWARE INTERRUPTS

in PL/1, one can specily an arbitrary condition 1o cause the activation of a certain piece of code:
CHECK (namelist) (1)
where "namelist" is a number of variables and/or labels. (11) is a cond’tion and can be used as a part of a
statement, for example:

ON CHECK(namalist)
BEGIN;
- (12)

END;

The action block (enciosed by BEGIN; - END;) will be activated when any variable in "namelist” is changed,
or any label in “namelist” is passed. This resembles an interrupt mechanism, with software interrupt
generated whenever 2 change is made in 2 variable, or a cerfain slatement is executed, as specified in the
namelist. Generally, however, we do not want to execute 2 certain piece of code whenever a certain
variable iz morely changed. Rather, the action is o be performed when, for example, the particular
variable is within or outside 3 certain range, ie. the action depends on 2 boolean function of the
variable(s). This function must be included in the ON- statement, which instead of (12) then becomes:

ON CHECK(namelist) IF boolean expression THEN
BEGIN;
= (13)

END;

The ON-statement is aclivated every time any change is made in the namelist element(s) and then the
boolean expression is evaluated, upon which the BEGIN; == END; block may be invoked.

The net effect is somuwhat similar to the proposed use of declared evenimarks. There are some
differences, though, which at jeast make the author feel in favor of his method:

A declared sventmark stands out from the rest of the program, so that it is easy for the compiler to
generate 3 fast expression, which in run-time can be executed directly under supervision of the monitor,
with monitor priority. The construci (13), however, is more integrated with the rest of the application
program, which makes it more difficult to separate the evaluation of the boolean expression {rom the rest
of the code. Unless the compiler analyzes the situation and makes an exception, the whole construet (13)
will be compiled to 2 corresponding piece of object code application program. in relation to scheduling,
evary sofiware interrupt, caused by the CHECK (nsmaelist) condition will then cause the whole IF == THEN --
BEGIN; -- END; code piecs to be scheduled (queued) for execution, end activated when priorities and other
schoduling conditions allow. Since the evaluation of the boolean expression generally takes place
substantially more often than the evaluation yields the value true (usually the exception), a considerable
waste of processor time results. In fact, the operation resembles somewhat "busy waiting” of Program TB2
of Example 2 in a previous suction, although the PL/! testing is, in principle, less wasteful because the

D

expression is evaluated only when a variable is changed.

-8-

If, on the other hand, the compiler makes an exception for an expression like (13), the resulling
operation will be similar to the proposed procedural events. The only difference then is in program notation
and ils consequences for

1) the clarity and simplicity for the programmer

i) the compiler construction; esse of implementstion.
Regarding 1), it is usually better to avoid exceptions. Regsrding i), personal preference may be different,
but the author feels that the clarily is enhanced by the modular distinguishing between event evaluation
and activated code as is the case for procedural events.

REFERENCES

[1] Pettersen, O. SYNCHRONIZATION OF CONCURRENT PROCESSES.
Submilted February 1975 for consideration of publication in Comm. ACM.
[2] Dertouzos, M. L. CONTRO! ROBOTICS; THE PROCEDURAL CONTROL OF PHYSICAL PROCESSES.
informstiol. Frocessing 7 4. North-Holisnd Publishing Co. 1974 (IFIP 74 Proceedings).

Ly i ot Sl b A S Y

' W?J s (PR e R -

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)
REPORT DOCUMENTATION PAGE BENCRE (O ETIE FOR
P : PORT NUMBER. " 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER =
4 STAN-CS-75-561, AIM-%¢1)
. r.‘,;_l'_‘_’h? (end Subtitle) e e S. TYPE OF REPORT & PERIOD COVERED

/ /
[L (;ROCEDURAL /EVENTS AS (SOF’IWARE INTERRUPTS. | technical, June 1975
N -~ £ ~ 4

e e e e e 6. PERFORMING ORG. REPORT NUMBER

R s] STAN-CS=75-501 (also AIM=-261)
|7 AuTWoR(e) S. CONTRACT CR GRANT NUMBER(s)

¢U Odd/ Pettersen j @ DAH(‘:15 -73-C-¢h33

9. PERFORMING ORGANIZATION NME AND ADDRESS
Stanford University

Computer Science Department

Stanford, California 94305

11. CONTROLLING OFFICE NAME AND ADDRESS

Col. Dave Russell, Deputy Director ARPA/IP
ARPA Headquarters ﬂ-8 NUMBER OF PAGES

._‘_—mmmd..tmm, Va. 22200
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 1S. SECURITY CLASS. (of this report)

ONR Representative: Philip Surra
Durand Aeronauties Bldg., Rm. 165 UNCLASSIFIED

Stanford University m‘
SCHEDULE

Stanford, California 94305

16. DISTRIBUTION STATEMENT (of this Report)

e

Releasable without limitations on dissemination

4 s
‘/"f’,/«_. A A /

4
17. DISTRIBUTION STATEME\IT (of lhi'iﬁ?jnet mtered in Block 20, if ditferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide if necessary and identify by block number)

Scheduling, synchronization, language design, parallel programming,
multiprogramming, concurrent processes, process communication, shared
variables, events, software interrupts.

i o b L i v A B S e T e i B il Sl o a7
8

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

The paper deals with procedural events, providing a basis for synchronizatiog
and scheduling, particularly applied on real-time program systems of multiple
paraliel activities ("multi ;?k") .

There is a great need for/onvenient scheduling mechanisms for minicomputer
systems as used in process ¢ontrol, but so far mechanisms somewhat similar
to those proposed here are found only PI/1 among the generally known high-level
languages. PL/1, however, is not very common on computers of this size.
Also, the mechanisms in PL/1 seem more restriced, as compared to those (continubd)

DD , on'ss 1473 e€oimion oF 1 nov 68 1S OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

o W e

i L . v JR——— e c———w i

UNCLASSIFIED ’

SECURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)

|

#20

Pproposed here.

A new type of boolean program varia le, the EVENTMARK, is proposed.
Eventmarks represent events of any kind that may occur within a
computational process and are believed to give very efficient and
convenient activation and scheduling of program modules in a real-time
system. An eventmark is declared similar to a Procedure, and the
proposed feature could easily be amended as an extension to existing
languages, as well as incorporated in future language designs.

e

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

